PioneeringEd Strategies

Applicable to most subjects

Highlighting and Using Colors

- Use red pens or markers to highlight key terminologies and definitions that need to be remembered

Examples

Education is knowledge training systematic train of cha developme most si One of the most su

Flashcards

- Write a question on one side and the answer on the other
- Write out math formulas or concepts on one side with explanation and related details on the other

Examples

Mind-Mapping

- Start with a central idea in the middle with related details branching out

Examples

Note-Taking Enhancements

- Divide notes into 3 sections to help simplify complex topics
- Summarize concepts when possible
- Use abbreviations and symbols
- Use red pens

Example

CUE COLUMN	
- Key words - Key questions	- Key ideas - Important dates, people, and places - Diagrams and pictures - Formulas - Repeated (stressed) information

Pre-Tests

- Bank of questions self-created in a study-guide format to help prepare for exams
- Structure questions ranging from easy to hard
- Must be inclusive of complex concepts

Acrostics and Acronyms

- Fossil - to learn about fossils
- Found underground
- Older fossils founder lower down
- Some are imprints
- Sedimentary rocks hold fossils
- Insects have gold coloring
- Limestone helps preserve fossils
- IPMAT - learn the stages of cell division
- Interphase
- Prophase
- Metaphase
- Anaphase
- Telephase

Summary Guide

- Student creates a one-page checklist comprising of formulas, key terminologies, important dates, short notes, etc. to quickly review before an exam

Examples

Iimit

Lefinition
Precise Definition : We say $\lim _{x \rightarrow \infty} f(x)-L$ if \quad Limit at Infinity : We say $\lim _{x \rightarrow \infty} f(x)-L$ if we For every $\varepsilon>0$ there is a $\delta>0$ such that can make $f(x)$ as close to L as we want by whenever $0<|x-a|<\delta$ then $|f(x)-\iota|<e$. taking x large enough and positive.
"Working" Definition : We say $\lim _{x \rightarrow a} f(x)=L \quad$ There is a similar definition for $\lim _{\sim \rightarrow \infty} f(x)-L$ if we can make $f(x)$ as close to L as we want except we require x large and negative. y taking x sufficiently close to a (on either side Infinite Limit : We say $\lim f(x)=\infty$ if can make $f(x)$ arbitrarily large (and positive) by taking x sufficiently close to a (on either side of a) without letting $x=a$.
Right hand limit : $\lim _{x \rightarrow \infty} f(x)=L$. This has he same definition as the limite except ti equires $x>a$.
Lef hand limit : $\lim f(x)=L$. This has the There is a similar definition for $\lim _{x \rightarrow \infty} f(x)-\infty$ except we make $f(x)$ atbitrarily large and nceative. ame definition as the limit except it requires

Reatiouship between the limit and one-sided limis $\lim _{x \rightarrow \infty} f(x)=L \Rightarrow \lim _{x \rightarrow C} f(x)=\lim _{x \rightarrow \infty} f(x)=L \quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=L \Rightarrow \lim _{x \rightarrow a} f(x)=L$ $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x) \Rightarrow \lim _{x \rightarrow \infty} f(x)$ Does Not Exist

Properties

Assume $\lim f(x)$ and $\lim g(x)$ both exist and c is any number then,

1. $\lim _{x \rightarrow \infty}[c f(x)]=c \lim _{2 \rightarrow} f(x)$
2. $\lim _{x \rightarrow[}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim f(x)}{\lim g(x)}$
$g(x)$ provided $\lim _{x \rightarrow 0} g(x) \neq 0$
3. $\lim _{x \rightarrow-}[f(x) \pm g(x)]-\lim f(x) \pm \lim g(x)$
4. $\lim _{x \rightarrow \infty}[f(x)]^{*}=\left[\lim _{x \rightarrow \infty} f(x)\right]^{*}$
5. $\lim _{x \rightarrow \infty}[f(x) g(x)]-\lim _{x=\infty} f(x) \lim _{\underset{\sim}{m}} g(x) \quad$ 6. $\lim _{x \rightarrow \infty}[\sqrt{f(x)}]=\sqrt{\lim f(x)}$

Basic Limit Evaluations at $\pm \infty$

Note: $\operatorname{sgn}(a)=1$ if $a>0$ and $\operatorname{sgn}(a)=-1$ if $a<0$.

1. $\lim _{x \rightarrow \infty} e^{x}=\infty$ \& $\lim _{x \rightarrow \infty} e^{x}=0 \quad$ 5. neven: $\lim _{x \rightarrow \infty} x^{x}=\infty$
2. $\lim _{x \rightarrow \infty} \ln (x)-\infty \quad \& \quad \lim _{x \rightarrow-\infty} \ln (x)-\infty \quad$ 6. n odd: $\lim _{x \rightarrow \infty} x^{n}-\infty$ \& $\lim _{x \rightarrow-\infty} x^{n}=-\infty$
3. If $r>0$ then $\lim _{x \rightarrow \infty} \frac{b}{x}=0 \quad$ 7. n even : $\lim _{x \rightarrow+\infty} a x^{x}+\cdots+b x+c=\operatorname{sgn}(a) a x$

If $r>0$ and x^{\prime} is real for negative $x \quad$ 8. n odd: $\lim _{x \rightarrow a} a x^{\prime \prime}+\cdots+b x+c=\operatorname{sgn}(a) \infty$ $\begin{array}{ll}\text { then } \lim _{x \rightarrow-\infty} \frac{b}{x^{-}}-0 & \text { 9. } n \text { odd: } \lim _{x \rightarrow \infty} a x^{*}+\cdots+c x+d=-\operatorname{sgn}(a) \infty\end{array}$

Exponents and Monomials-Quick Reference

Tipl|

$(-37)=-27 \quad-3 \cdot 3 \cdot 3=\cdot 27$

$\stackrel{3 x^{2}}{ }=\frac{3}{x^{2}}$
"In this problem, only yhex x contains she negative exponent.
sowe only take the reciprococalof x x.

Muttiplying Monomials Example	
	Ongnal Probem
	Muliply ${ }^{\text {arurceefficents. }}$
	Multiply the variables with like bases. (Add the exponents.)
	Fmal 1 aswer

Simplifing Monomials Example		
2x $2 x^{2} y^{4}$. $x^{2} x^{2} y^{2}=$		Ongnal Pooblem
$\frac{3 x}{\frac{3 x^{2}}{}{ }^{2} y^{2} \cdot 9 x^{2} y^{2} y^{2}}=$	$18 x^{*} y^{8}$	Step Mamply we
$\frac{3 x}{} \cdot y^{+}$	\square	
$\frac{2 x^{2} y^{2}}{3 x} \cdot \frac{9 x^{2} y^{2}}{y^{4}}=$	$\frac{188 y^{4} y^{3}}{3 x y^{4}}$	
18 x	${ }^{6}$	Ste 3 Drasemen
$3 x y^{4}$		
$\frac{18 x^{*} y^{4}}{3 x y^{4}}=$	$\frac{6 x^{2} y}{\square}$	$\text { Step } 4 \text { Subtract the }$ $\frac{x^{4}}{y}=x^{3} \text { and } \frac{y^{1}}{y^{4}}=y$
$\frac{2 x^{2} y^{2}}{3 x} \cdot \frac{9 x^{2} y^{2}}{y^{4}}=$	${ }^{6 \times 2} y$	Final Answer

Scientifin otation must always bewition with the same
componenetits as the folowiong model
$1.5876 \times 10^{\circ}$.

Mnemonics

- Linking new information to things they already know, in order to improve the memory of key information.
- These strategies include using verbal and visual cues to trigger memory and make associations.

Example

- Kings play chess on fine glass sets

Kings	Play	Chess	On	Fine	Glass	Sets
K	P	C	O	F	G	S
I	H	L	R	A	E	P
N	Y	A	D	M	N	E
G	L	S	E	I	U	C
D	U	S	R	L	S	I
O	M			Y		E
M						S

Speech in Color

- Assign a particular color to each of the eight parts of speech
- noun - red
- verb-blue
- adjective - green
- adverb - orange
- preposition - purple
- pronoun - pink
- interjection - brown
- conjunction-black
- Have the students underline each of the words in the sentence according to its function.

Example

- The fuzzy cat walked quickly around the room.
- The girl sat quietly in her desk.

Percentage to Fraction

- To convert a percentage to a fraction, first convert to a decimal (divide by 100), then use the steps for converting decimal to fractions.

Example

- Convert 80% to a fraction
- Steps
- Convert 80% to a decimal (=80/100): 0.8
- Write down the decimal "over" the number 1: 0.8/1
- Multiply top and bottom by 10 for every number after the decimal point (10 for 1 number, 100 for 2 numbers, etc): $0.8 \times 10 / 1 \times 10=8 / 10$
- Then Simplify the fraction: 4/5

Fraction to Percentage

- The easiest way to convert a fraction to a percentage is to divide the top number by the bottom number, then multiply the result by 100, and add the "\%" sign.

Example

- Convert $3 / 8$ to a percentage
- First divide 3 by $8: 3 \div 8=0.375$,
- Then multiply by $100: 0.375 \times 100=37.5$
- Add the "\%" sign: 37.5\%

Table

$\frac{\text { Percent }}{1 \%}$	$\frac{\text { Decimal }}{}$	
5%	0.01	Fraction
5	0.05	$1 / 100$
10%	0.1	$1 / 20$
$121 / 2 \%$	0.125	$1 / 10$
20%	0.2	$1 / 8$
25%	0.25	$1 / 4$
$331 / 3 \%$	0.333	$1 / 3$
50%	0.5	$1 / 2$
75%	0.75	$3 / 4$
80%	0.8	$4 / 5$
90%	0.9	$9 / 10$
99%	0.99	$99 / 100$
100%	1.0	$100 / 100$
125%	1.25	$5 / 4$
150%	1.5	$3 / 2$
200%	2.0	$200 / 200$

